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The error in simulation of viscous flows in domains with sharp
corners has been evaluated for a model problem at zero Reynolds
number. Methods based on a local analytical solution give reliable
results but their applicability is limited. The ad hoc numerical meth-
ods give an error thatl is not negligible and has a nonlocal character
in some parts of the flow. ®© 1995 Academic Press, Inc.

I. INTRODUCTION

Flows with either discontinuous boundary conditions or with
an abrupt change in the boundary shape are of interest in many
applications. Singularities induced by these effects may give
rise to an additional error in the numerical solution of the field
cquations. Analysis of this error is the objective of this paper.

In order to simplify our presentation, we shall limit this
discussion to the classical case of a viscous flow over a cavity
(see Fig. 1), Several methods [ 10] have been proposed in order
to approximate the singular behaviour of vorticity at the upper
(convex) corners. While each of these methods produces a
solution, it is not known which one is best and whether any of
them provide an accurate approximation of the actual solution.
Because of lack of anything better, these methods are widely
used, with an implicit assumption being made that the error
caused by the potentially improper treatment of singularity has
at most a local character.

I'he purposes of this paper are (i) o estimate the error eaused
by different numerical freatments of the corner singularity and
(ii} 1o verily the assumption regarding the local nature of such
an eiror,

The first group of methods considered here combines a local
analytical description of singularity (taken from Ref. [8]}, which
is valid in a small neighbourhood of the corner, with a purely
numerical solution away from the comer. The idea of such
mixing of numerical and analytical solutions was originally
proposed by Motz [7]. We shall use grid convergence studies
in order o test these methods,

* Prolessor,
T Visiting Fellow.,

The analytical solution {8] is valid in the case of zero Reyn-
olds pumber flows, The nonzero Reynolds number flows have
been purposely omitied from our tests in order to avoid addi-
tonal uncertainties associated with the applicability of the ana-
Iytical solulion when convective lerms are present.

The second group of methods uses ad hoc numerical approxi-
mations which do not require any particular knowledge of the
structure of singularity. We have tested eight of them. Since it
has been shown that the flow does not separate at the corner
[I1, 13], we have rejected any method based on this assumption
[see Ref. 10]. We assess the accuracy of these methods by
carrying out grid convergence studies and comparing the results
with those obtained using methods based on the local analytical
description of singularity.

In Section 1T we describe our test problem and its numerical
solution, The analytical structure of singularity is reviewed in
Section HI. Numerical solutions incorporating an analytical
description of singularity and proofs of their convergence are
described in Section IV. A purely numerical treatment of singu-
larity and the resulting error are discussed in Section V. An
example where an algorithm based on an analytical description
of singularity fails is given Section V1. A short summary of
the main conclusions is given in Section VIL

I1. PROBLEM FORMULATION

We consider Mlow over a cavity as sketched in Fig. 1. The
appropriate field equations are the Navier—Siokes equations
and the cquation of continuity. The streamfunction—vorticity
formulation is used which, in the Stokes limit, has the form

Vip= o, (1
Viw=0. )

In the above, i denotes the streamfunction and w stands for
the vorlticity. The appropriate boundary conditions are the con-
ditions of no-slip and no-penetration at the solid boundaries.
The inllow and outfiow conditions correspond to a linear veloc-
ity distribution, as shown in Fig. 1.
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FIG. 1.
singularity is shown in Fig. 4.

b= wymomisk=i G

¢r=a_!_’f/=0 aty: —1f0r|x|5 %a (3b)
¥

wza_l_!l=0 atx:i%,—lﬂyﬁo, (3C)
0x

Y=y, 0= —1 atx== §0=y=1, (3d)

b=ho=-1 aty=1,-32=x=3/2. (3e)

A square computation grid of size A is used, with grid lines
parallel to the x and y and such that the grid fits exactly the
geometry of the channel, with the walls as certain grid lines.
Around a typical internal grid point (xg, y), we adopt the
convention that the quantities at (xg, yo), (x¢ + A, ¥,
{xp, Yo + A), (xg — A, w), and (xg, y, — A) are denoted by
subscripts 0, 1, 2, 3, and 4 respectively. The (1) and (2) are
then approximated by using central differences at (x,, yo) in
the usual manner, to give

i+ s s oy — Ay + Ay =0,

w +w; twt+ - 4w =0,

4
(5)

The boundary conditions for the Eqgs. (4}-(5) are given by
(3). The values of w required at grid points on the solid walls
are evaluated using a second-order approximation [9]

1

T oA

(W1 — ey + Tefy). (6)

"

Sketch of the flow domain. The results are based on method A (see text). The error distribution along line x; due to approximate treatment of

In the above, the subscript b refers to a value at the appropriate
boundary point, the subscript j refers to the internal grid point
most immediate to b, and the subscript j + 1 corresponds to
the next interior grid point in the same direction.

All the equations were solved by a successive underrelax-
ation procedure. The iterations were performed until the
convergence criteria |wf™ — wf| < 107° and |7 — ¢} <
107, with & denoting the iteration number, were satisfied at
all grid points,

III. CORNER SINGULARITY

With the grid structure used the (upper) comner points
(x = *}, y = 0), where the vorticity is singular, are the grid
points. This renders the finite difference approximation (5)
invalid at the grid points (x5, yo) = (=% A), (x, ») =
(=2 + A 0, (xo, y) = G — A, O and (%, yo) = (&, A).
One may note that while the bottom corners are also grid
points, they do not enter the calculations and the vorticity is
not singular there.

It can be shown [11] that near an external corner, the stream-
function and vorticity can be described in terms of infinite
series, whose two leading order terms have the form:

gi(r, 8y = A, r*ccos[3m{A, — 2)/4] cos(A )
— cos(3mA,/4) cos[(A, — 2) 6]}
+ A, ra fsin[3m(A; — 2)/4] sin(A,0)

— sin(3mA/4) sin[(A, — 2) 0]} + ... (Fa)
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w(r, ) = 4 A,ri = (A, — 1) cos(3mA/4) cos[(A, — 2) 6]
+ 4 A2 (N, — 1) sin(3mA/4) sin[(A, — 2) 6] + ...
(7o

In the above, r is the radial distance from the corner and the
angle 8 is as defined in Fig. 2 with # = O bisecting the corner
angle, A, = 1.5444837 and A, = 1.9085292. The constants A,
and A, corresponding to the antisymmetric and symmetric parts
of the flow around 8 = 0, respectively, have to be determined
from flow conditions away from the corner.

IV. NUMERICAL SOLUTION WITH ANALYTICAL
DESCRIPTION OF THE SINGULARITY

Application of Eq. (7) is explained with the help of Fig. 2.
The w, value is singular and it renders the finite difference
approximation (5) invalid at points 1 and 2. The w, and , are,
therefore, evaluated from (7b) converting points 1 and 2 into
boundary points for the vorticity field, Constants A, and A, are
evaluated by matching (7) with the numerical solution. Various
matching methods can be summarized as follows:

Method A: Determine A, and A, from the known vorticity
at points 3 and 4 (the values of @; and w, have to be updated
sequentially during the iteration process).

Method B: Determnine A, and A, from the known values of
streamfunction at points 1 and 2 (the values ¢ and ¢ have to
be updated sequentially during the iteration process).

Method C: Use method A but also impose values of 4 at 1
and 2 from Eq. (7a) rather than from Eq. (4).

Method D: Use method B but also impose values of @ at 3
and 4 from Eq. (7b) rather than from Eq. (6).

Method E: Use the formula

‘}’2 + ‘I!’l
AZ

wy = —1.75042

Method A has been used by Bramley and Dennis [1] and Shen

FLORYAN AND CZECHOWSKI

TABLE Ia
Constants A, and A, Computed on the Basis of Method A

A Aoy, o) Arlws, wy) A, ) Az (. )
0.1 .1807915 —(.7867092 0.1385074 —0.8399356
0.05 .1633243 —0.7970514 0.13258204 —0.8366852
0.025 0.1548943 -0.8013786 0.1288704 —0.8365979
0.0125 (.1508968 —(.8030848 0.1264776 —-0.8370210
0.00625 0.1490467 —0.8037241 0.1251384 —0.8373481]

Nore. Values of 4, and 4; computed from ¢, and ¢ are given for compari-
SOn purposes.

and Floryan [11]. Holstein and Paddon [3] incorporated (7) by
introducing a fictitious (finite) value of vorticity at the corner.
This value is obtained by taking only the first term on the right
hand side of (7a) and determining A, through matching with
the symmetric (around 6 = 0) part of the streamfunction (as
represeiited by iy, and ). This leads to Method E which should
properly account for the magnitude of vorticity, but which may
not be able to reproduce accurately certain topological features
of the flow field around the corner like, for example, location
of the separation point. Shen et al. [11] used (7) to construct
a special element for analysis of creeping flows around sharp
corners using finite element discretization. Ladeveze and Peyret
[5] incorporated (7} into a finite difference algorithm in a primi-
tive variables formulation.

Success of all of the above methods hinges on the applicabil-
ity of Egs. (7), which is only valid in the asymptotic limit of
r— 0 (i.e., in a sufficiently small neighbourhood of the comer).
Since the matching always takes place at a finite distance away
from the corner, the question arises whether use of (7) can be
justified. In the absence of exact solution, this issue will be
tested by grid convergence studies. We note that if (7) provides
an accurate approximation of the solution at a distance A away
from the corner, then all of the above methods should produce
identical (within the error of approximation) results.

Tables la—Ie give constants A, and A, computed on the basis
of methods A-E. Results show that while the computed values
do converge as a function of A, they appear to approach different

TABLE Ib
Constants A; and A, Computed ¢n the Basis of Method B

A Ay (dy, l,l’z) Ay (0, Y Ay (w3, @y} Ay (s, @)
0.1 0.1689749 —{1.8224835 0.2265245 —(.7741082
.05 0.1555%63 —{.8247175 0.1974867 —0.7884542
0.025 0.1485831 —0.8204075 0.1844199 —0.7941451
0.0125 0.1450987 —0.8274104 0.1787600 —0.7963145
.00625 0.1432484 —0.8279951 0.1761787 —(.7971947

Note. Values of A, and A, computed from w; and w;, are given for compari-
SOn purposes.
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TABLE Ic¢
Constants 4, and A, Computed on the Basis of Method C
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TABLE le
Constant A, Computed on the Basis of Method E

A A, A, A A (i, ) Az (¢, ) Ay (@, @4 Az (w3, w))
04 0.2024630 —0.7733487 0.1 (.1395129 —(1.9338717 0.1821792 —{.8522522
0.05 0.1755533 —{1.7857563 0.05 0.1356366 —0.9333481 (0.1675329 —0.8645927
0.025 0.1641912 — (7901927 0.025 0.1338410 —-{.9333427 0.1623412 —.8690145
0.0125 0.1591173 —0.7917119 0.0125 0.1330480 —0.9334358 (.1607021 —(.8705054
0.00625 0.1570712 —0.7923180 0.00625 0.1326736 —0.9335018 0.1603138 —(L.8709720

limits depending on the method used. Methods A and B demon-
strate that the basic assumption underlying the algorithm, i.e.,
that we are sufficiently close to the comner to be able to use
(7), is not fulfilled even for A = 0.00625.

Analysis of results of grid convergence studies shows that
A, converges at a rate very close to the theoretical one of A",
with the methods based on matching of streamfunction having
the exponent smaller by 10—15%. A; converges at a rate close
to the theoretical one of A'* for methods A and C, with the
exponent reduced by about 50% for methods B and D. Theoreti-
cal values have been obtained by noting that the dominant
symmetric term in the truncated part of (7a) is 0(+*%%) and
the dominant antisymmetric term is 0(+>*) (see, for example,
Ref, (3)).

It may be concluded on the basis of the above results that
the structure of the numerical solution is correct and accurate
results can be obtained by further reduction of the grid size.

Since methods A-E are based on different implementations
of (7), they are not computationally equivalent and one should
not be surprised by the fact that they produce slightly different
results (see Tables la—Ie). If the principle underlying the algo-
rithm is correct, however, these differences should have only
a local character and should decrease with distance away from
the corner. Figure 3a shows the results of testing of methods
A and E with the matching points moved by distance 4A away
from the comer (A, and A, are calculated from vorticity at
points M and N of Fig. 3a). High grid density was obtained
using local grid refinement around the corner. These results
show that A, and A, tend to values independent of A and
independent of the method used to implement (7}. As a second
test, A; and A, were calculated using values of vorticity at nine

TABLE Id
Constants A, and A; Computed on the Basis of Method D

A Ay A,
.1 0.1711653 —0.8169246
.05 0.1572662 —0.8207434
0.025 0.1500948 —0.8228899
0.0125 0.1464405 —0.8239667
0.00625 0.1446062 —0.8247189

Nore. Values of A; (not used in the solution of the field equations) computed
from ¢ and t,, and A, and A; computed from w; and w, are given for compari-
507 pUrposes.

pairs of points located symmetrically with respect to the corner
(Fig. 3a). Figure 3b shows that the square mean deviation &
of A, and A, from the mean value decreases with a decrease

1

of A. Here, o is defined as o = = 2221 (A — An)t, where

A = % EL, Ay and k = 1(2) corresponds to A, (A;).

The above tests confirm convergence of methods based on
local analytical description of singularity for this test problem.
This convergence is not generally guaranteed and, as a matter
of fact, Section VI describes a test problem where such meth-
ods fail.

The convergence of methods discussed in this Section is of
obvious advantage. Present results indicate that good approxi-
mation is obtained only for very fine grids, e.g., A < s37. This
means that for larger A the truncated expansion (7) is not
sufficiently accurate. Several tests were made with two more
terms from the complete expansion [8] added 1o (7). Since the
exponents A now become complex, six real constants had to
be determined from matching with the numerical solution. Be-
cause it was not possible to demonstrate convergence of the
additional constants as a function of A, this approach was not
pursued.One should note that complex exponents A correspond
to solutions that are oscillatory in r and therefore may have
no physical meaning in the problem studied. Because of the
inconclusive results of the numerical experiments, we cannot
make convincing arguments either against or for retention of
these terms.

One may argue, on the basis of results presented above, that
in spite of sound theoretical basis, the methods described in
this section are impractical due to excessive requirements on
grid size. Tt will be shown in the next section that, nevertheless,
there is no alternative if accuracy is important.

V. PURELY NUMERICAL SOLUTIONS

The ad hoc numerical methods for resolving the singularity
problem used in the present study are as follows:

Method F: Two discontinuous wall values of w are assigned
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FIG. 3. Results of the convergence tests for methods A (—) and E (——-). (A): constants A, and A, evaluated from vorticity at points M and N. (B): mean
deviation o of constants A, and A, evaluated from vorticity at pairs of points located symmetrically with respect to the comer (see (A) for location of these points).

to point 0 in Fig. 2. The upstream value w, is evaluated by
applying (6) along the vertical grid line, and the downstream
value o, is obtained by applying (6) along the horizontal grid
line [10].

Method G: The average of wall values of w is used at point
0 in Fig. 2 {10], i.e.,

wy = e + o).

Method H: Only the upstream value of w is used at point 0
in Fig. 2 [10], ie.,

Wy = w,.

Method I: Symmetry of ¢ around O is assumed (Ff = ¢,
rF = i in Fig. 2, Kawaguti method [10]), i.e.,

-

50— L

| (=W, /Y, *100%
]
| [
a ]

30
200 \
H
| E‘&\
0 S M—|
0 0.25 0.5

wy = —20 + #’2)/152-

Method J: The corner is cut by drawing a straight line between
3 and 4 in Fig. 2, ie,,

wo = (— i — iy + i)/ A%
Methed K: The finite-difference approximation at 1 and 2

is applied along lines inclined at 45° to the main grid lines,
thus avoiding use of the value of w at the corner (see [2, 10]).

Method L: Symmetry of  around # = 0 in Fig. 2 is as-
sumed, i.e.,

wy = — (i + l;5‘2)/-/-\2-

Method M: Comer is assumed to be inclined at 45° to the

o

ol kY
I

M\\\L

G

15

10—F

| (o;-w,) /w3, *100%

0 ~ 1 I
0 0.25 0.5

T

FIG. 4. Distribution of the relative error of the streamfunction (A) and vorticity (B) along line x; (see Fig. I). The lines labelled E-M deanote the error

resulting from methods E—M, respectively, for A = 4.
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TABLE Ila

Maximum Value of the Relative Error of Vorticity Determined
on the Basis of Methods E-M

A
Method & + & .
B 038 0.4 0.2 0.1
F 35 1.9 1.0 0.4
G 44 2.2 k.1 04
H 0.9 0.1 0.2 0.4
1 13.5 62 28 13
I 157 7.3 3.4 1.7
K 128 6.9 15 20
L 19.3 ] 4.5 2.9
M 62 31 3 0.8

Note. See text for details.

horizontal axis and vorticity is evaluated using one-sided finite-
difference approximation along diagonal line (6 = 0} in Fig.
5 (method 4 from [10]), i.e.,

Wy — “4’5/52

where 5 denotes value of i at point 5 in Fig. 2.

To examine the accuracy of the above methods, we calculated
the relative errors defined as |(f — u)eu| = 100% and
(o, — w)w, * 100% along nine directions shown in Fig. 1.
Here, the subscript A denotes results obtained with method A
{our reference method) and subscript i indicates one of the
remaining methods (F-M). We have also included method E
in these comparisons. The distributions of errors along direction
Xy are displayed in Fig. 4. Their maximum values found within

o | . .
the limit 1 =r= 7 which can be used as a simple measure of

their nonlocality, are given in Tables 1la and Ilb.

TABLE IIk

Maximum Value of the Relative Error of Streamfunction
Determined on the Basis of Methods E-M

A
Method & 32 & i
E 31 0.4 0.2 0.1
F 13.7 58 28 0.7
G 6.6 37 22 0.7
H 17 14 0.1 0.2
I 30.6 13.3 59 28
J 25.3 129 6.5 34
K 334 16.1 8.1 5.5
L 46.0 20.9 9.6 4.7
M 11.1 59 3.0 1.6

Note, See text for details,
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Methods A and E are based on different implementations of
the local analytical solution but give similar results, as discussed
in Section IV. In the neighborhoed of the corner the discrepancy
may be substantial but at a distance larger than several A it is
negligible, Table 2, Figure 4. The success of method E, which
forces the streamfunction to be symmetric around # = 0 in
Fig. 2, led us to proposing method L, which directly uses the
symmetry property in the finite-difference discretization.

The error in determination of the streamfunction using ad-
hoc numerical methods (F-=M}) is largest in the neighbourhood
of the comer, but decreases with increasing distance. Solution
outside the cavity is affected little by the singularity treatment.
Inside the cavity the relative error is substantial even around
the centre of the cavity and this shows that the error cannot be
treated as a local phenomenon only. Its largest values concen-
trate around the separation streamline and it is unlikely that
the location of this streamline can be accurately determined
using any ad hoc approximation. Qualitatively, ail methods
give a similar error distribution, with method H giving the
smallest values. It is worth noting that method H is least affected
by the flow separation phenomenon.

The qualitative distribution of the vorticity error is similar
to the error in streamfunction, as can be seen in Fig. 4b. This
error is nonlocal inside the cavity and its largest values occur
along the cavity’s side wall. Method H gives the smallest values
while method I the largest ones,

We can summarize the above discussion by stating that the
approximate numerical treatment of the corner singularity re-
sults in an error that has a non-local character. The error persists
even at considerable distances away from the corner in the
separated part of the flow. The numerical method that assigns
corner values of vorticity which are least affected by the separa-
tion phenomenon gives the smallest error.

The actual selection of the best or easiest to use method is
left to the reader and his willingness to accept a certain level
of uncertainty in the results. Data given in this paper should
help to estimate this uncertainty. For example, if one works

i 1
o [t
‘l
|
|
|
|
|
!

2.0

FIG.5. Flow around an infinitely thin barrier. (+) denotes points for which
discretization (3) is not valid. () denotes points of matching between numerical
and analytical solutions.
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TABLE III

Constants in Eq. (8) Determined from Matching with the
Numerical Solution

FLORYAN AND CZECHOWSKI

Caoeff. A (.1 0.05 0.025
Al 1.3239 > 10710 0.1925 % 107 0.1136 x 107"
B_\p 0.2118 0.2276 0.2350
B, —4.992 -7.642 —11.26
A 0.2098 x 1078 0.3511 x 107 0.5455 % 10™*
By 124 26.83 56.31
A —0.4986 x 1077 —0.1142 x 1077 -0.2536 x 1977
B, —2167 —65.42 —1955
Asp 0.9220 X 107¢ 0.2907 x 1077 0.9046 x 1077
By 23.83 R4 436.6
A, —0.7960 X 1078 —0.3411 X 1077 —0.1467 X 10°°
B, —~13.62 ~84.49 -5130

with A = £ and is prepared to accept 5% error for vorticity

and 20% error for streamfunction, then all methods with excep-
tion of K give the same results.

VI. FAILURE OF METHOD BASED ON ANALYTICAL
DESCRIPTION OF SINGULARITY

Results discussed in Section IV may leave one with an im-
pression that an algorithm incorporating a local analytical de-
scription of singularity always produces accurate results (as-
suming that a sufficiently refined grid is used). As a
counterexample, we consider a model problem involving Stokes
flow around an infinitely thin barrier, as shown in Fig. 5. The
structure of the solution around the tip has been given in the
form of infinite series by Lugt and Schwidersky [6].

olr, 8) = A_ 1y ¥ sin(6/2) + B_,,, r "2 cos(6/2)
+ By + A 17 sin(8/2)
+ By r'? cos(8/2) + A rsin 8 (])
+ B,rcos 8+ A ¥ sin(3 6/2)
+ By r¥cos(3 8/2) + A, r*sin(2 6)
+ B, rfcos(2G)+ -,
The notation 1s explained in Fig. 5. We have retained 11 terms

in the expansion to make the truncation error smaller than the
discretization error. The eleven constants were determined by

matching numerical and analytical solutions for vorticity at
eleven grid points shown in Fig. 5. Since the flow is symmetric
with respect to the barrier, six constants in (8) should be zero.
In the calculations, all 11 constants were retained and the sym-
metry condition was used 10 assess the accuracy of calculations.
Results shown in Table 1 indicate that coefficients A; and B;
do not converge with decreasing A. The same problem has
been resolved using other sets of grid points for the matching
purposes and with decreasing grid size of up to A = & without
affecting the above conclusion.

VIII. CONCLUSIONS

A. The error due to a purely numerical treatment of singular-
ity at the external corner in the vorticity field has been evaluated.
The results indicate that the error is not negligible and has a
nonlocal character in the separated part of the flow, The area
around the separation streamline is affected the most.

B. Even when using a method that is well founded theoreti-
cally (i.e., a method based on a local analytical solution), one
must be cautious. The advantage of the method may be evident
only for a very fine grid. A possibility of failure of such a
method has been demonstrated.
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